4,675 research outputs found

    Orbital operations study. Volume 2: Interfacing activities analysis. Part 2: Structural and mechanical group

    Get PDF
    The activities of the structural and mechanical activity group of the orbital operations study project are discussed. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) mating, (2) orbital assembly, (3) separation, EOS payload deployment, and EOS payload retraction

    Orbital operations study. Appendix B: Operational procedures

    Get PDF
    Operational procedures for each alternate approach for each interfacing activity of the orbital operations study are presented. The applicability of the procedures to interfacing element pairs is identified

    Significance of low energy impact damage on modal parameters of composite beams by design of experiments

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of composite beams damaged by low energy impacts around the barely visible impact damage limit (BVID). The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and classical sine dwell excitations in order to compare that which of the methods among Polymax and Half Bandwidth Method is more suitable for damping estimation in the presence of damage. Design of experiments (DOE) performed on the experimental data show that natural frequency is a more sensitive parameter for damage detection than the damping ratio. It also highlighted energy of impact as the factor having a more significant effect on the modal parameters. Half Bandwidth Method is found to be unsuitable for damping estimation in the presence of damage

    Non-Newtonian fluid flow through three-dimensional disordered porous media

    Full text link
    We investigate the flow of various non-Newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of ({\it i}) the disordered geometry of the pore space, ({\it ii}) the fluid rheological properties, and ({\it iii}) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions. This anomalous condition of ``enhanced transport'' represents a novel feature for flow in porous materials.Comment: 5 pages, 5 figures. This article appears also in Physical Review Letters 103 194502 (2009

    Classical limit in terms of symbolic dynamics for the quantum baker's map

    Full text link
    We derive a simple closed form for the matrix elements of the quantum baker's map that shows that the map is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give a formal proof that the quantum baker's map approaches a classical Bernoulli shift in the limit of a small effective Plank's constant.Comment: 12 pages, LaTex, typos correcte

    Off-Equilibrium Dynamics in Finite-Dimensional Spin Glass Models

    Full text link
    The low temperature dynamics of the two- and three-dimensional Ising spin glass model with Gaussian couplings is investigated via extensive Monte Carlo simulations. We find an algebraic decay of the remanent magnetization. For the autocorrelation function C(t,tw)=[]avC(t,t_w)=[]_{av} a typical aging scenario with a t/twt/t_w scaling is established. Investigating spatial correlations we find an algebraic growth law ξ(tw)∼twα(T)\xi(t_w)\sim t_w^{\alpha(T)} of the average domain size. The spatial correlation function G(r,tw)=[<Si(tw)Si+r(tw)>2]avG(r,t_w)=[< S_i(t_w)S_{i+r}(t_w)>^2]_{av} scales with r/ξ(tw)r/\xi(t_w). The sensitivity of the correlations in the spin glass phase with respect to temperature changes is examined by calculating a time dependent overlap length. In the two dimensional model we examine domain growth with a new method: First we determine the exact ground states of the various samples (of system sizes up to 100×100100\times 100) and then we calculate the correlations between this state and the states generated during a Monte Carlo simulation.Comment: 38 pages, RevTeX, 14 postscript figure

    Who knows best? A Q methodology study to explore perspectives of professional stakeholders and community participants on health in low-income communities

    Get PDF
    Abstract Background Health inequalities in the UK have proved to be stubborn, and health gaps between best and worst-off are widening. While there is growing understanding of how the main causes of poor health are perceived among different stakeholders, similar insight is lacking regarding what solutions should be prioritised. Furthermore, we do not know the relationship between perceived causes and solutions to health inequalities, whether there is agreement between professional stakeholders and people living in low-income communities or agreement within these groups. Methods Q methodology was used to identify and describe the shared perspectives (‘subjectivities’) that exist on i) why health is worse in low-income communities (‘Causes’) and ii) the ways that health could be improved in these same communities (‘Solutions’). Purposively selected individuals (n = 53) from low-income communities (n = 25) and professional stakeholder groups (n = 28) ranked ordered sets of statements – 34 ‘Causes’ and 39 ‘Solutions’ – onto quasi-normal shaped grids according to their point of view. Factor analysis was used to identify shared points of view. ‘Causes’ and ‘Solutions’ were analysed independently, before examining correlations between perspectives on causes and perspectives on solutions. Results Analysis produced three factor solutions for both the ‘Causes’ and ‘Solutions’. Broadly summarised these accounts for ‘Causes’ are: i) ‘Unfair Society’, ii) ‘Dependent, workless and lazy’, iii) ‘Intergenerational hardships’ and for ‘Solutions’: i) ‘Empower communities’, ii) ‘Paternalism’, iii) ‘Redistribution’. No professionals defined (i.e. had a significant association with one factor only) the ‘Causes’ factor ‘Dependent, workless and lazy’ and the ‘Solutions’ factor ‘Paternalism’. No community participants defined the ‘Solutions’ factor ‘Redistribution’. The direction of correlations between the two sets of factor solutions – ‘Causes’ and ‘Solutions’ – appear to be intuitive, given the accounts identified. Conclusions Despite the plurality of views there was broad agreement across accounts about issues relating to money. This is important as it points a way forward for tackling health inequalities, highlighting areas for policy and future research to focus on
    • …
    corecore